C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Operations Research

	Subject	Code: 4SC06ORE1	Branch: B.Sc. (Mathematics)		
	Semeste Instructio		Time: 02:30 To 05:30	Marks: 70	
	(2) (3)	Use of Programmable calculator a Instructions written on main answ Draw neat diagrams and figures (Assume suitable data if needed.	• •	bited.	
Q-1		Attempt the following questio	ns:	(14)	
	a)	Write the Standard form of the Minimize $z = x_1$ Subject to	$2x_{1} - 2x_{2} + x_{3}$ $2x_{1} + 3x_{2} + 4x_{3} \ge -4$ $3x_{1} + 5x_{2} + 2x_{3} \ge 7$	(02)	
	b)	and $x_1, x_2 \ge 0$ ar Which type of solution exist for Maximize $Z = 3x_1 + 4x_2$ Subject to	and x_3 is unrestricted in sign. The given LP problem $x_1 - x_2 = -1$ $-x_1 + x_2 \le 0$	(02)	
	,	and $x_1, x_2 \ge 0$			
	c) d)	Write general mathematical mo	def of an LP problem. $-z_i = 0$ value indicates	(02) (01)	
	e)	Define: Convex Set.	$z_j = 0$ value indicates	(01)	
	f)	Define: Slack variable.		(01)	
	g)	Define: Dummy activity.		(01)	
	h) i)	Define: Network. Define: Saddle point.		(01) (01)	
	i) j)	Define: Zero-sum game.		(01)	
	k)	e	raint in simplex method must be non-nega true or false.		

Page 1 || 4

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)Explain the graphical method of solving an LP problem. Also solve the following (07)a) LP problem using graphical method. Maximize $z = 3x_1 - 2x_2$ Subject to $\begin{aligned} x_1 + x_2 &\leq 1\\ 2x_1 + 2x_2 &\geq 4 \end{aligned}$ and $x_1, x_2 \ge 0$ What is linear programming problem? How can formulate a given problem into b) (04)LP problem? Solve the game whose pay off matrix is given by (03)c) Player B Player A B_2 B_3 B_1 A_1 3 1 1 0 -4 -3 A_2 5 1 -1 A_3 Q-3 Attempt all questions (14)Use the simplex method to solve the following LP problem. (07)a) Maximize $z = 3x_1 + 5x_2 + 4x_3$ Subject to $x_1, x_2, x_3 \ge 0$ and b) A company manufactures two products A and B. These products are processed in (04)the same machine. It takes 10 minutes to process one unit of product A and 2 minutes for each unit of product B and the machine operates for a maximum of 35 hours in a week. Product A requires 1 kg. and B requires 0.5 kg. of raw material per unit the supply of which is 600 kg. per week. Market constraint on product B is known to be 800 unit every week. Product A costs Rs.5 per unit and sold at Rs.10. Product B costs Rs.6 per unit and can be sold in the market at a unit price of Rs.8. Determine the number of units of A and B per week to maximize the profit. Formulation the problem as a linear programming problem. Find all basic solutions of the following system of equations (03)**c**)

 $2x_1 + 3x_2 + 4x_3 = 5, 3x_1 + 4x_2 + 5x_3 = 6.$ (14)

Attempt all questions Q-4

Maximize
$$z = -2x_1 - 2x_1$$

Subject to

$$3x_1 + x_2 = 34x_1 + 3x_2 \ge 6x_1 + 2x_2 \le 4$$

 x_2

and
$$x_1, x_2 \ge 0$$

Page 2 || 4

b) Obtain initial basic feasible solution for the following transportation problem using the matrix minima method.

	Α	В	С	D	Supply
Р	05	03	06	04	30
Q	03	04	07	08	15
R	09	06	05	08	15
Demand	10	25	18	07	60

c) Define: Basic solution, Basic feasible solution, Optimum basic feasible solution. (03)
 Attempt all questions (14)

- Q-5
- a) Using simplex method to solve the following LP problem Maximize $z = 3x_1 + 9x_2$

Subject to

$$\begin{aligned} x_1 + 4x_2 &\leq 8\\ x_1 + 2x_2 &\leq 4 \end{aligned}$$

and
$$x_1, x_2 \ge 0$$

- b) Explain the North-West corner method for obtaining an initial basic solution of a (04) transportation problem.
- c) A paper mill produces two grades of paper namely X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X and 300 tons of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding profits of Rs.200 and Rs.500 per ton. Formulate the above as a LP problem to maximize profit.
- Q-6

Attempt all questions

a) Determine an initial basic feasible solution using (a) North-West corner method,
 (b) Vogel's approximation method, by considering the following transportation problem:

	D_1	D_2	D_3	D_4	D_5	Supply
Α	02	11	10	03	07	04
В	01	04	07	02	01	08
С	03	09	04	08	12	09
Demand	03	03	04	05	06	21

b) Solve the following LP problem graphically

and

Maximize $z = 2x_1 + 3x_2$ Subject to

$$\begin{array}{l} x_1 + x_2 \le 4 \\ 2x_1 + 3x_2 \le 6 \end{array}$$

$$x_1, x_2 \ge 0$$

c) Explain: Errors in a network.

Page 3 || 4

(03)

(03)

(14) (08)

(07)

Q-7	a)	Attempt all que Solve the follo			ortatio	on pro	blem	using	MOE	I Metho	od.			(14) (08)
				D_1		D_2			D_3			Supply		
		O_1		04			03			02			10	
		<i>O</i> ₂		02			05			00			13	
		O_3		03			08			06			12	
		Demand		08			05			04				
	b)	For the game with payoff matrix:											(03)	
		Player A			Player B									
				B_1			B_2			<i>B</i> ₃		_		
		A_1			-1				2			-2		
		A_2			6		4					-6		
		Determine the value of game. Is this game (<i>i</i>)fair ?(<i>ii</i>)strictly determinable?												
	c)	Draw a network diagram for the following data:										(03)		
		Activity	Α	В	С	D	E	F	G	Н		Ι	J	
		Immediate Predecessors	-	A	В	В	В	C	C	F,G	Ľ	D, E, H	I	
Q-8 Attempt all questionsa) Obtain initial basic feasible solution of the following transportation problem									<u>.</u>	(14)				
								lem. Is	(08)					
		this solution an	1 optin	nal so	lution	? If no	ot, obt	ain the	e opti	mal solu	ition	l .		
					Ι	Π	III	IV	V	Avail	able			
			A		5	8	6	6	3	80)			
			В		4	7	7	6	5	50)			
			С		8	4	6	6	4	90)			
			Dem	and	400	400	500	400	800					
	b) Draw a network diagram for the following data:									(03)				
		Activity	Α	В	C	D	E	F	(G H		Ι	J	-
		Immediate Predecessors	-	-	А	А	B, C	В, С		E E	Ι	D, G	F, H, I	

 Predecessors
 A
 A
 B, C
 B, C
 E
 E
 D, C

 c)
 Explain: Minimax and maximin principle used in the theory of games.

(03)

Page 4 || 4

